\(\int \frac {\sqrt {a+c x^2}}{d+e x} \, dx\) [529]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F(-2)]
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 19, antiderivative size = 103 \[ \int \frac {\sqrt {a+c x^2}}{d+e x} \, dx=\frac {\sqrt {a+c x^2}}{e}-\frac {\sqrt {c} d \text {arctanh}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{e^2}-\frac {\sqrt {c d^2+a e^2} \text {arctanh}\left (\frac {a e-c d x}{\sqrt {c d^2+a e^2} \sqrt {a+c x^2}}\right )}{e^2} \]

[Out]

-d*arctanh(x*c^(1/2)/(c*x^2+a)^(1/2))*c^(1/2)/e^2-arctanh((-c*d*x+a*e)/(a*e^2+c*d^2)^(1/2)/(c*x^2+a)^(1/2))*(a
*e^2+c*d^2)^(1/2)/e^2+(c*x^2+a)^(1/2)/e

Rubi [A] (verified)

Time = 0.06 (sec) , antiderivative size = 103, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.263, Rules used = {749, 858, 223, 212, 739} \[ \int \frac {\sqrt {a+c x^2}}{d+e x} \, dx=-\frac {\sqrt {a e^2+c d^2} \text {arctanh}\left (\frac {a e-c d x}{\sqrt {a+c x^2} \sqrt {a e^2+c d^2}}\right )}{e^2}-\frac {\sqrt {c} d \text {arctanh}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{e^2}+\frac {\sqrt {a+c x^2}}{e} \]

[In]

Int[Sqrt[a + c*x^2]/(d + e*x),x]

[Out]

Sqrt[a + c*x^2]/e - (Sqrt[c]*d*ArcTanh[(Sqrt[c]*x)/Sqrt[a + c*x^2]])/e^2 - (Sqrt[c*d^2 + a*e^2]*ArcTanh[(a*e -
 c*d*x)/(Sqrt[c*d^2 + a*e^2]*Sqrt[a + c*x^2])])/e^2

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 739

Int[1/(((d_) + (e_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> -Subst[Int[1/(c*d^2 + a*e^2 - x^2), x], x,
 (a*e - c*d*x)/Sqrt[a + c*x^2]] /; FreeQ[{a, c, d, e}, x]

Rule 749

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d + e*x)^(m + 1)*((a + c*x^2)^p/(e
*(m + 2*p + 1))), x] + Dist[2*(p/(e*(m + 2*p + 1))), Int[(d + e*x)^m*Simp[a*e - c*d*x, x]*(a + c*x^2)^(p - 1),
 x], x] /; FreeQ[{a, c, d, e, m}, x] && NeQ[c*d^2 + a*e^2, 0] && GtQ[p, 0] && NeQ[m + 2*p + 1, 0] && ( !Ration
alQ[m] || LtQ[m, 1]) &&  !ILtQ[m + 2*p, 0] && IntQuadraticQ[a, 0, c, d, e, m, p, x]

Rule 858

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\sqrt {a+c x^2}}{e}+\frac {\int \frac {a e-c d x}{(d+e x) \sqrt {a+c x^2}} \, dx}{e} \\ & = \frac {\sqrt {a+c x^2}}{e}+\left (a+\frac {c d^2}{e^2}\right ) \int \frac {1}{(d+e x) \sqrt {a+c x^2}} \, dx-\frac {(c d) \int \frac {1}{\sqrt {a+c x^2}} \, dx}{e^2} \\ & = \frac {\sqrt {a+c x^2}}{e}+\left (-a-\frac {c d^2}{e^2}\right ) \text {Subst}\left (\int \frac {1}{c d^2+a e^2-x^2} \, dx,x,\frac {a e-c d x}{\sqrt {a+c x^2}}\right )-\frac {(c d) \text {Subst}\left (\int \frac {1}{1-c x^2} \, dx,x,\frac {x}{\sqrt {a+c x^2}}\right )}{e^2} \\ & = \frac {\sqrt {a+c x^2}}{e}-\frac {\sqrt {c} d \tanh ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{e^2}-\frac {\sqrt {c d^2+a e^2} \tanh ^{-1}\left (\frac {a e-c d x}{\sqrt {c d^2+a e^2} \sqrt {a+c x^2}}\right )}{e^2} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.37 (sec) , antiderivative size = 110, normalized size of antiderivative = 1.07 \[ \int \frac {\sqrt {a+c x^2}}{d+e x} \, dx=\frac {e \sqrt {a+c x^2}+2 \sqrt {-c d^2-a e^2} \arctan \left (\frac {\sqrt {c} (d+e x)-e \sqrt {a+c x^2}}{\sqrt {-c d^2-a e^2}}\right )+\sqrt {c} d \log \left (-\sqrt {c} x+\sqrt {a+c x^2}\right )}{e^2} \]

[In]

Integrate[Sqrt[a + c*x^2]/(d + e*x),x]

[Out]

(e*Sqrt[a + c*x^2] + 2*Sqrt[-(c*d^2) - a*e^2]*ArcTan[(Sqrt[c]*(d + e*x) - e*Sqrt[a + c*x^2])/Sqrt[-(c*d^2) - a
*e^2]] + Sqrt[c]*d*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2]])/e^2

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(183\) vs. \(2(89)=178\).

Time = 2.18 (sec) , antiderivative size = 184, normalized size of antiderivative = 1.79

method result size
risch \(\frac {\sqrt {c \,x^{2}+a}}{e}-\frac {\frac {\sqrt {c}\, d \ln \left (\sqrt {c}\, x +\sqrt {c \,x^{2}+a}\right )}{e}-\frac {\left (-e^{2} a -c \,d^{2}\right ) \ln \left (\frac {\frac {2 e^{2} a +2 c \,d^{2}}{e^{2}}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+2 \sqrt {\frac {e^{2} a +c \,d^{2}}{e^{2}}}\, \sqrt {c \left (x +\frac {d}{e}\right )^{2}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+\frac {e^{2} a +c \,d^{2}}{e^{2}}}}{x +\frac {d}{e}}\right )}{e^{2} \sqrt {\frac {e^{2} a +c \,d^{2}}{e^{2}}}}}{e}\) \(184\)
default \(\frac {\sqrt {c \left (x +\frac {d}{e}\right )^{2}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+\frac {e^{2} a +c \,d^{2}}{e^{2}}}-\frac {\sqrt {c}\, d \ln \left (\frac {-\frac {c d}{e}+c \left (x +\frac {d}{e}\right )}{\sqrt {c}}+\sqrt {c \left (x +\frac {d}{e}\right )^{2}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+\frac {e^{2} a +c \,d^{2}}{e^{2}}}\right )}{e}-\frac {\left (e^{2} a +c \,d^{2}\right ) \ln \left (\frac {\frac {2 e^{2} a +2 c \,d^{2}}{e^{2}}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+2 \sqrt {\frac {e^{2} a +c \,d^{2}}{e^{2}}}\, \sqrt {c \left (x +\frac {d}{e}\right )^{2}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+\frac {e^{2} a +c \,d^{2}}{e^{2}}}}{x +\frac {d}{e}}\right )}{e^{2} \sqrt {\frac {e^{2} a +c \,d^{2}}{e^{2}}}}}{e}\) \(261\)

[In]

int((c*x^2+a)^(1/2)/(e*x+d),x,method=_RETURNVERBOSE)

[Out]

(c*x^2+a)^(1/2)/e-1/e*(c^(1/2)*d/e*ln(c^(1/2)*x+(c*x^2+a)^(1/2))-(-a*e^2-c*d^2)/e^2/((a*e^2+c*d^2)/e^2)^(1/2)*
ln((2*(a*e^2+c*d^2)/e^2-2*c*d/e*(x+d/e)+2*((a*e^2+c*d^2)/e^2)^(1/2)*(c*(x+d/e)^2-2*c*d/e*(x+d/e)+(a*e^2+c*d^2)
/e^2)^(1/2))/(x+d/e)))

Fricas [A] (verification not implemented)

none

Time = 0.62 (sec) , antiderivative size = 574, normalized size of antiderivative = 5.57 \[ \int \frac {\sqrt {a+c x^2}}{d+e x} \, dx=\left [\frac {\sqrt {c} d \log \left (-2 \, c x^{2} + 2 \, \sqrt {c x^{2} + a} \sqrt {c} x - a\right ) + 2 \, \sqrt {c x^{2} + a} e + \sqrt {c d^{2} + a e^{2}} \log \left (\frac {2 \, a c d e x - a c d^{2} - 2 \, a^{2} e^{2} - {\left (2 \, c^{2} d^{2} + a c e^{2}\right )} x^{2} - 2 \, \sqrt {c d^{2} + a e^{2}} {\left (c d x - a e\right )} \sqrt {c x^{2} + a}}{e^{2} x^{2} + 2 \, d e x + d^{2}}\right )}{2 \, e^{2}}, \frac {2 \, \sqrt {-c} d \arctan \left (\frac {\sqrt {-c} x}{\sqrt {c x^{2} + a}}\right ) + 2 \, \sqrt {c x^{2} + a} e + \sqrt {c d^{2} + a e^{2}} \log \left (\frac {2 \, a c d e x - a c d^{2} - 2 \, a^{2} e^{2} - {\left (2 \, c^{2} d^{2} + a c e^{2}\right )} x^{2} - 2 \, \sqrt {c d^{2} + a e^{2}} {\left (c d x - a e\right )} \sqrt {c x^{2} + a}}{e^{2} x^{2} + 2 \, d e x + d^{2}}\right )}{2 \, e^{2}}, \frac {\sqrt {c} d \log \left (-2 \, c x^{2} + 2 \, \sqrt {c x^{2} + a} \sqrt {c} x - a\right ) + 2 \, \sqrt {c x^{2} + a} e - 2 \, \sqrt {-c d^{2} - a e^{2}} \arctan \left (\frac {\sqrt {-c d^{2} - a e^{2}} {\left (c d x - a e\right )} \sqrt {c x^{2} + a}}{a c d^{2} + a^{2} e^{2} + {\left (c^{2} d^{2} + a c e^{2}\right )} x^{2}}\right )}{2 \, e^{2}}, \frac {\sqrt {-c} d \arctan \left (\frac {\sqrt {-c} x}{\sqrt {c x^{2} + a}}\right ) + \sqrt {c x^{2} + a} e - \sqrt {-c d^{2} - a e^{2}} \arctan \left (\frac {\sqrt {-c d^{2} - a e^{2}} {\left (c d x - a e\right )} \sqrt {c x^{2} + a}}{a c d^{2} + a^{2} e^{2} + {\left (c^{2} d^{2} + a c e^{2}\right )} x^{2}}\right )}{e^{2}}\right ] \]

[In]

integrate((c*x^2+a)^(1/2)/(e*x+d),x, algorithm="fricas")

[Out]

[1/2*(sqrt(c)*d*log(-2*c*x^2 + 2*sqrt(c*x^2 + a)*sqrt(c)*x - a) + 2*sqrt(c*x^2 + a)*e + sqrt(c*d^2 + a*e^2)*lo
g((2*a*c*d*e*x - a*c*d^2 - 2*a^2*e^2 - (2*c^2*d^2 + a*c*e^2)*x^2 - 2*sqrt(c*d^2 + a*e^2)*(c*d*x - a*e)*sqrt(c*
x^2 + a))/(e^2*x^2 + 2*d*e*x + d^2)))/e^2, 1/2*(2*sqrt(-c)*d*arctan(sqrt(-c)*x/sqrt(c*x^2 + a)) + 2*sqrt(c*x^2
 + a)*e + sqrt(c*d^2 + a*e^2)*log((2*a*c*d*e*x - a*c*d^2 - 2*a^2*e^2 - (2*c^2*d^2 + a*c*e^2)*x^2 - 2*sqrt(c*d^
2 + a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a))/(e^2*x^2 + 2*d*e*x + d^2)))/e^2, 1/2*(sqrt(c)*d*log(-2*c*x^2 + 2*sqr
t(c*x^2 + a)*sqrt(c)*x - a) + 2*sqrt(c*x^2 + a)*e - 2*sqrt(-c*d^2 - a*e^2)*arctan(sqrt(-c*d^2 - a*e^2)*(c*d*x
- a*e)*sqrt(c*x^2 + a)/(a*c*d^2 + a^2*e^2 + (c^2*d^2 + a*c*e^2)*x^2)))/e^2, (sqrt(-c)*d*arctan(sqrt(-c)*x/sqrt
(c*x^2 + a)) + sqrt(c*x^2 + a)*e - sqrt(-c*d^2 - a*e^2)*arctan(sqrt(-c*d^2 - a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 +
 a)/(a*c*d^2 + a^2*e^2 + (c^2*d^2 + a*c*e^2)*x^2)))/e^2]

Sympy [F]

\[ \int \frac {\sqrt {a+c x^2}}{d+e x} \, dx=\int \frac {\sqrt {a + c x^{2}}}{d + e x}\, dx \]

[In]

integrate((c*x**2+a)**(1/2)/(e*x+d),x)

[Out]

Integral(sqrt(a + c*x**2)/(d + e*x), x)

Maxima [F(-2)]

Exception generated. \[ \int \frac {\sqrt {a+c x^2}}{d+e x} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate((c*x^2+a)^(1/2)/(e*x+d),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(e>0)', see `assume?` for more
details)Is e

Giac [F(-2)]

Exception generated. \[ \int \frac {\sqrt {a+c x^2}}{d+e x} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate((c*x^2+a)^(1/2)/(e*x+d),x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:index.cc index_m i_lex_is_greater Error: Bad Argument Value

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+c x^2}}{d+e x} \, dx=\int \frac {\sqrt {c\,x^2+a}}{d+e\,x} \,d x \]

[In]

int((a + c*x^2)^(1/2)/(d + e*x),x)

[Out]

int((a + c*x^2)^(1/2)/(d + e*x), x)